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Consider a rigid body which is performing simple harmonic oscillations of small ampli- 
tude in the free surface of deep water under gravity. Under certain geometrical 
conditions on aD, the wetted surface of the body, it is known that the linear boundary- 
value problem 8 for a corresponding velocity potential # is uniquely solvable a t  all 
frequencies. The usual method for solving 9 is to derive a Fredholm integral equation 
of the second kind over aD. There are two familiar ways of doing this: (i) represent # 
as a distribution of simple wave sources over aD, leading to an integral equation for 
the unknown source strength; (ii) apply Green’s theorem to # and a simple wave 
source; when the field point lies on aD, this gives an integral equation for the boundary 
values of #. It is well known that both of these integral equations have unique solu- 
tions, except a t  the same infinite discrete set of frequencies (the irregular frequencies). 

I n  this paper, we shall describe an alternative method for solving 8: when the 
field point, in (ii), lies inside the body, we obtain an integral relation. If the simple 
wave source has a suitable bilinear expansion, this integral relation may be reduced 
to an infinite set of equations for the boundary values of #. These equations, called 
the ‘null-field equations for water waves’, appear to be new; equations of this type 
were first obtained by Waterman for electromagnetic and acoustic scattering prob- 
lems. The required bilinear expansion has been given by Ursell (1981) for two dimen- 
sions, and is given here for three dimensions. Using these, we show that the null-field 
equations always have a unique solution - irregular frequencies do not occur. This 
result is proved here for water waves in two and three dimensions. Similar results 
may be obtained for water of constant finite depth. 

1. Introduction 
Consider a rigid body which is floating in the free surface of a fluid. We suppose 

that the fluid is incompressible, inviscid and of infinite depth. We denote the fluid 
domain by D, the free surface by F and the wetted surface of the body by 8 0 ,  which 
we assume has the following properties (John 1950). Let aD* denote the union of the 
surface aD and its mirror image in the plane of the free surface. We shall say that aD 
has properties J if aD* is a convex, twice-differentiable surface. (This implies that 
aD must intersect the free surface perpendicularly.) 

We take Cartesian co-ordinates with the y-axis vertical (y increasing with depth) 
such that F occupies a region of the plane y = 0. 

Suppose that the body performs simple harmonic oscillations of small amplitude 
and radian frequency w .  For irrotational motion, we can formulate the following well- 
kno~vn, linear boundary-value problem 9 for a velocity potential 9 { $ ( P )  e-itvJt): 
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Determine a function Q(P) satisfying Laplace’s equation 

V2$(P) = 0 in D, 
the free-surface condition 

K$+-=O a+ o n F  
au u 

and the boundarv condition 

where K = d /g ,  g is the acceleration due to gravity, and the function V ( p )  is prescribed 
on aD. I n  addition, there is the radiation condition that waves travel outwards to 
infinity, and the condition that the fluid motion vanishes as y -+ co. 

The notation is as follows: capital letters P, Q denote points of D; lower-case letters 
p ,  q denote points of aD; the origin 0 is assumed to lie in F-, the portion of the plane 
y = 0 which is inside the body; D- denotes the interior of the body, i.e. the region with 
boundary aD u F-; P-, Q- denote points of D-; r p  is the length OP; a/&, denotes 
normal differentiation a t  the point p ,  in the direction from aD into D. 

The following theorem on the solvability of 9 has been proved by John (1950). 
Theorem 1. Suppose that aD has properties J and that V ( q )  is continuous on 80. Then 

there exists a unique solution of the boundary-value problem 9, for all real values of K.  
We shall henceforth assume that the conditions of theorem 1 are always satisfied. 
The usual approach for solving the boundary-value problem 9 is to derive an 

integral equation of the second kind, over the boundary 8 0 .  One way of doing this is 
to assume that Q(P) can be represented by a distribution of sources over aD; the 
source strength is then found to  be the solution of a Fredholm integral equation of the 
second kind. Alternatively, an integral equation of the second kind can be derived 
directly from Green’s theorem. It is well known that both of these methods (which will 
be described in $ 2) lead to boundary integral equations of the second kind which are 
singular a t  a certain infinite discrete set of frequencies, corresponding to the eigenvalues 
of a related interior problem. This phenomenon is clearly a consequence of the method 
of solution, for we have already remarked that the original boundary-value problem 
9 is known to have a unique solution a t  all frequencies, provided that aD has pro- 
perties J and V ( q )  is continuous (theorem 1). 

A different approach to the related problems in acoustics has been employed by 
Waterman (1969). His method is based on solving the Helmholtz formula in the 
interior of the body and leads to an infinite system of equations, rather than a single 
(integral) equation. Martin (1980) has studied these equations (called the ‘null-field 
equations of acoustics’), and proved that they always have a unique solution, i.e. 
difficulties a t  interior eigenvalues do not occur with this method. 

In  this paper, we shall prove some analogous results for water-wave problems. In  
8 3, we derive the null-field equations for water waves in two dimensions, and prove 
that they always have a unique solution. I n  $4,  we consider the special case of an 
oscillating half-immersed circular cylinder. For this geometry, we show that the null- 
field equations may be obtained by suitably modifying Ursell’s well-known method 
of multipoles. In  $ 5 ,  we suggest a method which can be used to  solve the null-field 
equations numerically. As an example, we use this method to solve the equations 
corresponding to a heaving, half-immersed, elliptic cylinder. Finally, in 5 6, we derive 
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the null-field equations for water waves in three dimensions. Again, we are able to 
establish existence and uniqueness a t  all frequencies. The proof requires the extension 
of some results of Ursell(l981) to three dimensions, and these are given in appendix B; 
in particular, we give a new expansion for the simple wave source in three dimensions. 

2. Boundary integral equations 
Let G ( P ,  &) be any fundamental solution, i.e. G ( P ,  &) satisfies Laplace’s equation 

in D, the free-surface condition (1.1) and the radiation condition a t  infinity, and has 
a suitably normalized source singularity at Q (see e.g. Ursell 1981). The simplest 
choice for G ( P ,  &) is the simple wave source (Thorne 1953); in two dimensions (where 
the motion is independent of z ) ,  we have 

( 2 . l a )  
whilst in three dimensions we have 

GOP,  &) f Go@, Y, 2 ;  6, 7, !3 
(2 . lb )  

where R2 = (x - [)z + ( z  - Q2 and, in order to  satisfy the radiation condition, the path 
of integration passes below the pole of the integrand at  k = K .  (Note that our definition 
of G,(x, y, z ;  (, r,C) differs from the usual definition by an extra factor of 4 in (2.1 b ) ;  
this enables us to write down the same equations in three dimensions as in two 
dimensions. ) 

If  we apply Green’s theorem in D, to $(P)  and G,(P, &), we obtain the following 
equations: 

dk 
= &{R2+ (y - q ) 2 } - 4  + ${R2 + (y + Y)~} - *  + K e-”(~+’l)J,(kR) - $09 k - K ’  

These equations are analogous to Helmholtz’s formulae in acoustics (see, for example, 
Martin 1980). Similar equations may be derived when Go(P,Q)  is replaced by any 
fundamental solution G ( P ,  Q). 

If we use the boundary condition (1.2) in (2.3), we obtain 

which is a Fredholm integral equation of the second kind for the unknown boundary 
values of $. This integral equation possesses a unique solution unless the corresponding 
homogeneous integral equation, 

11-2 
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has a non-trivial solution. It was shown by John (1950) that (2.6) does have non- 
trivial solutions whenever K is an eigenvalue of the 'interior wave-Dirichlet problem ', 
where the Dirichlet condition $ = 0 is satisfied on aD and the free-surface condition 
(1.1) is satisfied on F-. At such values of K (called irregular by John) the integral 
equation (2 .5)  does not have a unique solution for general V ( p ) .  

A different approach for solving Y is to represent $ ( P )  by a distribution of simple 
wave sources over aD, 

# ( P )  = S P(a )  Go(P, a)  ds,. 

V(P) +I /4a) - Go(?& a)  d% = V(P)*  

(2.71 
aD 

On applying the boundary condition (1.2),  we find that the unknown source strength 
p ( q )  satisfies a 

aD an, (2.8) 

This integral equation is of the same form as ( 2 . 5 ) ,  except that  the kernel of (2.8) is 
the transpose of the kernel appearing in ( 2 . 5 ) .  (Here we have used the symmetry of 
the fundamental solution (2 .1) . )  Hence (2.8) has the same irregular values as (2.5). 

When K is not an irregular value, we can construct the solution of B by substituting 
the unique solution of (2 .8)  into (2.7).  This is because the representation (2.7) satisfies 
Laplace's equation in D, the radiation condition and the free-surface condition (for 
any continuous p ( q ) ) ,  whilst it automatically satisfies the boundary condition (1.2) 
on aD if p ( q )  satisfies (2.8). The situation is not so straightforward with the integral 
equation (2.5). Nevertheless, if we substitute the unique solution of (2.5) into (2.2),  
we can define a function U ( P ) ,  say, by 

which, by the following theorem, solves 9. 
Theorem 2. If K is not an irregular value and $(a) is the unique solution of (2.5),  

the function U(P) ,  defined by (2.9),  solves the boundary-value problem Y. 
Proof. (Here we use arguments which are similar to those used by Kleinman & 

Roach (1974) in the proof of their theorem 5.1.) Clearly, U(P)  satisfies Laplace's 
equation in D, the radiation condition and the free-surface condition. It only remains 
to  show that U(P)  also satisfies the boundary condition on aD, namely 

(2.10) 

If we differentiate (2.9) and let P approach aD, we see that U ( P )  will satisfy (2.10) if 
$(q )  also satisfies the following compatibility condition: 

(Note that a sufficient condition for the existence of the left-hand side of (2.11) is 
that $ be differentiable on aD, which is assumed to have properties J ;  see Kleinman & 
Roach (1974).) 

Let us define a function in D- by 

(2.12) 
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U, satisfies Laplace’s equation in D- and the free-surface condition on F-. Moreover, 
if we let P- approach aD, we find that 

= 0,  by (2.5).  

Since K is not an irregular value, it follows that U, vanishes identically in D- and, in 
particular, 

where n- is the unit normal vector on aD pointing into D-. Differentiating (2.12), we 
find that 

Thus the compatibility condition (2.11) is satisfied and so (2.9) solves 9. 
When K is an irregular value, the integral equations (2.5) and (2.8) are not uniquely 

solvable for general V ( p ) .  This difficulty was first overcome by John (1950). He was 
able to prove that 9 is uniquely solvable a t  the irregular values by giving a rather 
complicated argument involving the non-trivial solutions of the homogeneous form of 
equation (2.8). Another way of overcoming the difficulty a t  the irregular values is to 
use a different fundamental solution in place of G,(P, Q ) ;  see 3 3. 

Numerical solutions of the integral equations (2.5) and (2.8) have been obtained by 
many authors, for various aD and V(q).  It is known that the discretized versions of 
these integral equations become ill-conditioned within a narrow band of frequencies 
around each irregular frequency. Although several computational devices have been 
used to overcome this difficulty, it is not pertinent to describe them all here; for a 
recent review see Mei (1978). 

Let LG now examine (2.4). This is anintegral relation which asserts that the potential 
induced in D- by the sources on aD is exactly cancelled by the potential induced by 
the dipoles on aD. Waterman (1969) calls this the ‘extended boundary condition’, 
and (2.4) the ‘extended integral equation’. According to Mei (1978, p. 402), (2.4) has 
not been used for water-wave calculations. In acoustics, however, Waterman ( 1969) 
has replaced the interior integral relation (2.4) by an infinite system of equations, 
called the null-field equations. Martin (1980) has shown that the exterior problems 
of acoustics can always be solved by solving the system of null-field equations, i.e. 
the unphysical irregular values do not occur with this method. In  5 3, we shall prove 
the corresponding result for water waves in two dimensions. 

3. The null-field equations for water waves in two dimensions 

(2.1a), may be written as 
Recently, Ursell (1981) has shown that the simple wave source in two dimensions, 

m = O u = l  
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for rQ > rp ,  where the functions and @k are defined in appendix A; a& are regular 
and satisfy the free-surface condition ( 1 . 1 )  whilst @& (which are usually known as 
‘ multipole ’ potentials) satisfy the free-surface and radiation conditions, and are 
singular a t  0. 

Let C- be the inscribed circle to aD*, which is centred on 0. Similarly, let C, be the 
escribed circle to aD*. Let D ,  be the semicircular region which is bounded by F- 
and the lower half of C-; thus, D ,  is contained in D-. When P- lies inside D, (where 
r p  < rq) ,  we may substitute (3.1) into (2.4) to give 

where we have used the boundary condition (1.2). Since the functions a;(P-) are 
regular solutions of Laplace’s equation in D,., it follows that each term in (3.2) must 
vanish and so we obtain the following set of equations: 

We call these the ‘null-field equations for water waves’ and refer to them henceforth 
as (N.F.). These equat,ions, which appear to be new, form an infinite set of equations 
for the boundary values of Q. Once q5 is known on aD, we may use the integral repre- 
sentation ( 2 . 2 ) ,  together with (1.2), to evaluate q5 everywhere in D. I n  particular, if 
P lies outside C,, we can use (3.1) in (2.2) to obtain 

where the coefficients ck are given by 

2nc; =I (a&(q) V(q)-yl(q)-al(q))ds* a ((T = 1,2;  m = 0 , 1 , 2 ,  ...). (3.4) 
aD an* 

Equation (3.3) implies that, exterior to C,, $(P)  has an expansion in terms of a set 
of functions {@L}, each of which satisfies Laplace’s equation in D, the free-surface 
condition and the radiation condition. Expansions of this type were first used by 
Ursell(l949) to  solve the problem of the heaving, half-immersed circular cylinder (see 
3 4). Later, he proved that the set {a;) is complete (Ursell 1950). Therefore, we can 
assume that (3.3) holds exterior to C, and then proceed to give an alternative deriva- 
tion of the null-field equations. Apply Green’s theorem to Q(P) and @&(P) in the region 
bounded by aD, F and S,  where S is a large semicircle, of radius r ,  enclosing aD and 
centred on 0. There is no contribution from integrating over F ,  since Q and 0; both 
satisfy (1 .1) .  We can show that the contribution from integrating over S vanishes as 
r -+ co, by using (3.3), and then using asymptotic properties of 0% to prove that 

lim j:n {@k(r ,  0)- a @iL(r, 0 )  - @f,(r, 8)  
T+m ar ( 3 . 5 )  

(Here we have assigned plane polar co-ordinates ( r ,  O), - in < 0 < in, to points on S.) 
If we now choose appropriate values for m and (T, we obtain the complete set of null- 
field equations (N.F.). 

Thus, we see that the null-field equations do not depend, essentially, on the bilinear 
expansion of the wave source (2.1 a ) ,  or on the interior integrd relation (2.4), but on 
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the expansion of potentials which satisfy the free-surface and radiation conditions, 
as (3.3). 

Let us conclude this section by proving that the set of null-field equations (N.F.) 
possesses a unique solution $(q)  for all values of K .  We shall use arguments similar to 
those used by Martin (1980) for the corresponding exterior problem of acoustics. 

Suppose we multiply each of (N.F.) by a&(P-), where P-E D,, and then use (3.1) 
to yield 

Uo(P-) = 0, P-E D,, (3.6) 

where U, is defined by (2.12). Since Uo is a solution of Laplace's equation in D- which 
vanishes in D,, we can assert that (3.6) holds for all P- E D-. Letting P- approach aD, 
we obtain (2.5), which is a Fredholm integral equation of the second kind for $(q).  
As we have already remarked, (2.5) has a unique solution except a t  the irregular 
values of K .  Conversely, if we are not a t  an irregular value, it follows that the unique 
solution of (2.5) also solves the null-field equations. For, if $ ( q )  solves (2.5), we can 
define a function Uo(P-), by (2.12), which, by the arguments used to prove theorem 2, 
vanishes identically in D-, and so # ( q )  satisfies (N.F.). 

At the irregular values of K ,  this argument must be modified. Multiply the first 
N + 1 equations of (N.F.) by a&@&(P-), where the a$ are constants, and add the 
resulting equations to (N.F.), to give 

where C,(P, Q) is a new (symmetric) fundamental solution, defined by 

N 2  

m = O u = l  
G,(P, Q )  = GO(P, Q )  + x 24 a & @ W )  QXQ). 

Proceeding as before, we let P- approach a 0  to obtain 

which is another integral equation of the second kind for Q(q).  
Fundamental solutions of the form (3.8) have been considered by Ursell (1953, 

1981) and Sayer (1980). Ursell (1953) solved the problem of a half-immersed circular 
cylinder, of radius a, which is performing high-frequency, vertical oscillations on deep 
water; by taking N = 0 and a particular value for a:, he obtained an integral equation 
(3.9) whose kernel vanished as Ka --f 00, and which could be solved, rigorously, by 
iteration. 

Sayer (1980) also took N = 0 but considered an arbitrary cylinder (subject to aD 
having properties J ) ;  he proved the following result. Let a: = b, + ib,, where b1 and b, 
are real. Then, the integral equation (3.9), corresponding to this choice for G,(P, Q), 
always has a unique solution provided that: (i) b, and b, do not satisfy 

b,+ 274); + bg) = 0, (3.10) 

and (ii) the eigenfunction of the associated interior wave-Dirichlet problem does not 
vanish at, the origin. (Actually, Sayer considered t'he water to be of constant finite 
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depth h, whence the factor 27r in (3.10) is replaced by a function of h. He also performed 
many numerical computations for heaving circular and elliptic cylinders, and always 
found (ii) to hold.) 

Ursell (1981) also considered a cylinder of arbitrary cross-section. He proved the 
following theorem. 

Theorem 3. Let aD have properties J and let the constants a$ in (3.8) be chosen 
such that Y(ag) > 0 for g =  1 , 2  and m = 0,  1, ..., N .  Then the integral equation 
corresponding to this choice for G,(P,&), namely (3.9), is uniquely solvable a t  any 
given value of K ,  provided that N is sufficiently large. 

Returning to our problem, we see that if $(q)  satisfies the null-field equations, then, 
by taking a suitable linear combination of these equations, $(q) also satisfies an integral 
equation of the second kind, (3.9). Moreover, by theorem 3, this equation has a unique 
solution at  any given value of K .  Let us now prove the converse. 

Suppose that # ( q )  is the unique solution of (3 .9) .  Then, we can use (3.7) to define a 
function U,(P-) which, by (3.9), vanishes on aD. We cannot immediately assert that 
Ul vanishes everywhere in D-, since G, is singular a t  0. However, if P- E D,, we can 
use (3.1) and rewrite (3.7) as 

where 
a 

aD an* 
AL = 1 (@W V(P) - #(P) - @Xd) ds,. 

Now, we wish to show that $(a) satisfies (N.F.), i.e. that  A& = 0 for a = 1,2 and 
m = 0, 1,2, ... . This can be proved by using an argument given by Ursell (1981). 
Consider the integral 

(3.11) 

where the asterisk denotes the complex conjugate. Since U, and U: vanish on aD, 
an application of Green’s theorem in D-\D, shows that I = 0. Ursell (1981) then 
proved that if $(a&) > 0, then I can only vanish if 

A L = O  for g = 1 , 2  and r n = 0 , 1 , 2  ,..., N .  

If we let N + 00, we see that U,(P-) vanishes everywhere in D- and that $(a) satisfies 
the null-field equations.? We have thus proved the following theorem. 

Theorem 4. Suppose that aD has properties J and that V(q) is continuous on aD. 
Then, the null-field equations for wa,ter waves in two dimensions, (N.F.), possess a 
unique solution for all values of K .  

Corollary. If $(q )  satisfies the null-field equations (or the integral equation (3.9)), 
the solutlion of B is given by 

I = jc- ( u,; u: - u: an 

(3.12) 

Proof. We simply replace U, and Go by U, and G,, respectively, in the proof of 
theorem 2. I n  that proof, the restriction to regular values of K was needed to ensure 

t The proof that U,(P-) G 0 given by Martin (1980) for the exterior problems of acoustics 
is incorrect; howovor, similar arguments to  those used above can be used to construct a valid 
proof, and all the results of tlint paper remain unaltered. 
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that  U,(P-) = 0. Here, we have already shown that U,(P-) = 0 for any value of K ,  and 
so (3.12) holds for all values of K .  

We remark that, when P is exterior to C,, the null-field equations imply that the 
representation (3.12) reduces to (3.3) (with (3.4)). 

4. A half-immersed circular cylinder; the method of multipoles 
Consider a half-immersed circular cylinder, with wetted surface C ,  floating in the 

free surface of deep water. We define circular polar co-ordinates (r, 0) such that points 
on C have co-ordinates (a,@ with -477 6 0 < in-. The symmetric boundary-value 
problem 9 corresponding to heaving oscillations of the cylinder was first solved by 
Ursell(l949). We shall now briefly describe his method. For this particular geometry, 
we can represent $ ( P )  for all P E D as an infinite series of multipole potentials. Thus, 

we write a, 

where 0: is the potential due to a simple source at  the origin and @; are symmetric 
wave-free potentials for n > 0; see appendix A. Equation (4.1) satisfies Laplace's 
equation in D, the free-surface condition (1.1) and the radiation condition. Equation 
(4.1) also satisfies the boundary condition (1.2) on C if the coefficients c, can be chosen 

such that m 

V(a ,  0) = u, cos 8 = c, (; a):(?", 0)) (0 6 0 < in-), (4.2) 
n= 0 

where U, is a constant, and angular brackets indicate that r is to be put equal to a. 

rn = 0,1, . . . , and integrate over C to give 
To find the unknown coefficients c,, multiply (4.2) by the complete set {cos 2rn0}, 

This leads to an infinite system of linear algebraic equations for c,; approximate 
values for c, may be obtained by numerically solving a truncated system of equations. 

Instead of multiplying (4.2) by {cos2rn0}, let us multiply by the complete set 
{@h(a, 0)}, m = 0,1, ..., and integrate over C. We obtain 

We now apply Green's theorem to and 0; in the region bounded by C, F and S, 
where S is a large seniicircle of radius rm. There is no contribution from the integration 
over F, and the contribution from the integration over S also vanishes as ra, 3 CO, 

by (3.5). Hence (4.3) becomes 

V(a,  0) a;&, 0) ad0 = c" n=O 

(4.4) 
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by (4.1). We see that (4.4) are precisely the null-field equations for the symmetric 
oscillations of a half-immersed circular cylinder. This may be compared with the 
corresponding exterior problem of acoustics. For an oscillating circular cylinder, the 
null-field equations simply yield the Fourier components of the well known exact 
solution; for all other geometries, the null-field equations of acoustics must be solved 
numerically. For water-wave problems, the null-field equations must always be solved 
numerically; this will be discussed in 8 5 .  

5. Numerical solution of the null-field equations 
The null-field equations may be written as 

where $(q) is to be determined and the known constants V& are given by 

V& = IaD V(q)  @,L(q) ds,. 

I n  9 4, we showed that when aD is a semicircle, the null-field equations are related to 
Ursell’s method of multipoles; even for this simplest of geometries, the equations 
must be solved numerically. 

One approach is to write rn 

where the set of functions {$n(q)) is required to  be complete over aD. Substituting 
(5.2) into (5.1), we obtain an infinite system of linear algebraic equations for the un- 
known coefficients a,; truncating this system leads to a numerical method for solving 
the null-field equations. The choice of the set {$n} is largely a t  our disposal; trigono- 
metric functions and Chebyshev polynomials are suitable, but many other choices 
could be made. Rather than give a discussion of general numerical aspects here, we 
shall describe a particular example. 

We consider the vertical oscillations of a half-immersed elliptic cylinder. The 
corresponding boundary-value problem 9’ has been treated by several authors. For 
example, Porter (1960) has used conformal mapping and the method of multipoles, 
whilst Kim (1965) has solved the source integral equation (2.8). 

Let an arbitrary point q = (x, y)  on the wetted surface of the cylinder have co- 
ordinates z = asinq, y = bcosy (--in < q < in), 
where 2a and b are the beam and draught, respectively, of the cylinder. I n  circular 
polar co-ordinates ( r ,  B), we have 

where 
r = b(cos2y+H2sin2y)), t a n 8  = Htanq,  H = a/b. 

Since the motion is symmetric about 8 = 0 (q = 0), we only require the even (g = 1) 
null-field equations, and only need to integrate over half of aD. Moreover, we have 
V(q)  dsq = U,a cos q dy,  where the cylinder is oscillating with vertical velocity 

x = rsine, y = rcosB (--in 6 8 6 in), 
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Thus the null-field equations become 

/04n$(y)(bzcD&(q)] a (sin2y+H2cos2y)*dy = UoaV, (m = 0, 1,2,  ...), (5.3) 

where 

The source potential 0; may be evaluated using the expansion given by Yu & 
Ursell (1961), namely 

Qi(r, 8) = - {(log Kr -in + y )  cos (Kr  sin 8) + O sin (Kr sin O)} exp ( - Kr cos 0) 

cosm0, 

where y = 0.5772.. . is Euler’s constant. The wave-free potentials 
IA 1 )  as 

are given by 
\ I  

cos2mO K c o s ( 2 m - 1 ) 0  
cD&(r,O) =-+- (m = 1,2, ...). r2m 2m-  1 TZm-1 

The normal derivative of cD&, m = 0, 1,2, . . . , may be evaluated using 

a acD 1 a@ 
- @(r ,  0) = cos (a - 0) - + sin (a  - 0) - - an ar ae’ 

where H tan a = tan y. 
To solve the null-field equations, we substitute 

N 

n=O 
$ ( T )  = uoa 2 an$n(y) 

into the first N +  1 equations of (5.3) to obtain 

where 

N 

n=O 
2; Kmnan = V, (m = O , l ,  ..., N ) ,  (5.4) 

K,, = ~ ~ ~ n ~ y ) ~ ~ ~ & ( r , ~ ) ]  a (sin2y+H2coszy)3dy. 

(5.4) is a system of N +  1 linear algebraic equations for N +  1 unknown coefficients 
a,; Vm and K,, may be evaluated numerically using any suitable quadrature formula 
(the integrands are non-singular). I n  our numerical work, we tried $,(y) = cos 2ny and 
$,(y) = TZn(2y/n) ;  although other choices could have been made, we found the 
Chebyshev polynomials to be quite satisfactory for our problem. (Note that in numeri- 
cal computations the restriction to complete sets of functions {$%} is probably not 
required.) 

In table 1,  we give values of the virtual-mass coefficient for various values of Ka 
and H ,  where 

virtual-mass coefficient = 

(Here the virtual mass has been normalized by the mass of the fluid displaced by a half- 
immersed circular cylinder of radius a.) All the results shown were obtained using 
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H 
0.5 
0.75 
1 .o 
1.26 
1.5 
1.75 
2.0 
2.25 
2.5 
2.75 
3.0 

Wavenumber Ka 
f 

h 

0.5 1.0 1.5 2.0 2.5 

0.5369 0.6805 0.7888 0.8470 0.8828 
0.5782 0.6142 0.7056 0.7760 0.8228 
0.6446 0.6050 0.8649 0.7266 0.7759 
0.7061 0.6196 0.6512 0.6997 0.7444 
0.7578 0.6423 0.6522 0.6878 0.7257 
0.8005 0.6663 0.6603 0.6849 0.7161 
0.8360 0.6891 0.6715 0.6873 0.7124 
0.8656 0.7100 0.6837 0.6926 0.7124 
0.8907 0.7287 0.6960 0.6993 0.7147 
0.9122 0.7454 0.7077 0.7065 0.7184 
0.9307 0,7603 0.7186 0.7139 0.7228 

TABLE 1 .  Virtual-mass coefficient for heaving elliptic cylinder, 
for various Ka and H, where H = a / b  = half-beamjdraught 

3.0 

0.9056 
0.8561 
0.8135 
0.7815 
0.7598 
0.7462 
0.7385 
0.7349 
0.7340 
0.7348 
0.7368 

Chebyshev polynomials and N < 7.  Comparing our numerical values with the gra- 
phical results of Porter (1960, figure 13) and Kim (1965, figure 15), we see that the 
agreement is good (Kim's result must be multiplied by 2/77). We remark, however, 
that although the null-field equations are guaranteed to have a unique solution, our 
simple numerical scheme for solving these equations does not converge for very thin 
ellipses ( H  < 0.4 and H > 3, approximately). This difficulty also occurs when solving 
the null-field equations of acoustics, but can be alleviated by using different numerical 
methods; for references, see e.g. Martin (1980). 

6. Three dimensions 
We shall conclude this paper by briefly describing how the results of $ 3  may be 

extended to water-wave problems in three dimensions. To do this, we shall require 
the expansion of the simple wave source Go(P, &) (given by (2.1 b) ) ,  which is analogous 
to  (3.1).  For r ,  > r,, we have (this is proved in appendix B) 

where the functions aTm and @Tm are defined in appendix B; as before, aj", are regular 
potentials which satisfy the free-surface condition ( 1 .  l), whilst @Tm are multipole 
potentials which satisfy the free-surface and radiation conditions, and are singular a t  0. 

We are now in a position to state the null-field equations for water waves in three 
dimensions. Consider a rigid body floating in the free surface of deep water. Then, 
following the derivation given in $ 3, we easily obtain 

(We have assumed that the wetted surface of the floating body, aD, is bounded and 
has properties J . )  

The existence of a unique solution to this system of equations is guaranteed by the 
following theorem. 
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Theorem 5 .  Suppose that aD is a bounded surface with properties J and that V(q) 
is continuous on aD. Then, the null-field equations for water waves in three dimen- 
sions, (6.2),  possess a unique solution for all values of K .  

Proof. We proceed exactly as in the two-dimensional case, i.e. we show that (p(q) 
satisfies (6.2) if and only if #(q)  satisfies a Fredholm integral equation of the second 
kind which is known to possess a unique solution. I n  order to obtain such an equation, 
we extend the results of Ursell (1981) to three dimensions. This is straightforward, 
once the expansion (6.1) has been found, e.g. integrals of the form (3.11) are easily 
evaluated, see appendix B. Thus, we are able to prove a three-dimensional analogue 
of theorem 3. All the remaining arguments used to prove theorem 4 may now be used 
here to complete the proof of theorem 5 .  

Let us now make a few remarks on the solution of the null-field equations in three 
dimensions. If aD is a hemisphere, the null-field equations are equivalent to the method 
of multipoles, as used by Havelock ( 1  955) for the heaving half-immersed sphere. If aD 
is axisymmetric (about the y-axis), it should be possible to  evaluate analytically some 
of the integrals appearing in (6.2); this would reduce the surface integrals over a l l  to 
line integrals. Similarly, any other symmetries in a particular problem 9 should also 
be exploited. Finally, most of the comments made in 9 5 are also pertinent here. 

7. Conclusions 
The best-known method for treating water-wave radiation problems (in two 

and three dimensions) is to solve an integral equation of the second kind over the 
(mean) wetted surface. However, it is also well known (John 1950) that the usual 
boundary integral equations are not uniquely solvable a t  the irregular values of K .  
I n  this paper we have described an alternative method, which is to solve the infinite 
system of null-field equations. These equations appear to be new in the context of 
water-wave problems, although there is an extensive literature on the corresponding 
equations for radiation and scattering problems in acoustics, electromagnetism and 
elastodynamics; see Waterman (1969) and Martin (1980) for references. 
- We have shown that the null-field equations for water waves always have a unique 
solution - the unphysical irregular values do not occur. Moreover, this solution may 
be used to solve the original boundary-value problem 9. We have proved these results 
in two and three dimensions for water of infinite depth; the extension to  water of 
constant finite depth is easily made, using the corresponding multipole potentials, 
6; and 6&, defined in appendices A and B, respectively. 

I n  3 5, we described a simple exact method for reducing the null-field equations t o  
an infinite system of linear algebraic equations. This method may be used to solve the 
null-field equations, numerically, by making two approximations : the infinite set of 
equations must first be truncated and then the unknown potential must be approxi- 
mated by a finite combination of the chosen basis functions. As an example, we used 
this method to solve the two-dimensional problem B corresponding to the vertical 
oscillations of a half-immersed elliptic cylinder. 

It is clear that much work remains to be done on the numerical solution of the null- 
field equations. Nevertheless, the null-field method has already proved to be com- 
putationally useful in other branches of mathematical physics; it is therefore hoped 
that the null-field equations for water waves will be just as useful. 
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Appendix A. Expansion of the source potential in two dimensions 
In this appendix, we shall simply quote a theorem which has been proved by Ursell 

Theorem A .  When r p  < rQ, the source potential defined by (2.1 a) can be expanded as 
(1981). 

2 

GO(P,Q) = s 2 aXP)@XQL 
r n = O L r = l  

where 
a @(P)  = -- a#(P), dlc e-kucoskx- 

k-K’ ax 

sin(2m+l)O K sin2mO +-- 2m r2m ’ @W) = ,prn+1 

- 2  at(P) = - 2e-Kv cos Kx, c,t(P) = e-Kusin Kz,  

-2(2m-1)! a (-Kr)q 

2(2m)! ( - K r ) Q  

z- cos qe, 
K 2 m  q=2m q !  

ak(P)  = 

aL(P) = - z -  sin 48, 
KPrn+l p = zm+1 q! 

m = 1,2, .. ., and the point P = (x, y) has circular polar co-ordinates given by 

(with r = rp ) .  
We remark that theorem A may also be proved for a simple wave source in water of 

constant finite depth; for this case, the a; remain unaltered whilst the infinite-depth 
multipole potentials @& must be replaced by the corresponding potentials for finite 
depth, 6;; see Ursell (1981). 

x = rsin8, y = rcos8 

Appendix B. Expansion of the source potential in three dimensions 
The simple wave source in three dimensions, Go(P,Q) is defined by (2.lb); the 

properties of Go(P, Q )  are given by Wehausen & Laitone (1960, p. 475). We introduce 
spherical polar co-ordinates for P = (x, y, z )  and Q = ( 5 , ~ )  5) )  and write 

x = pcosa, y = reose, z = psina, p = rsin8, 

fc = pocosao, q = rocosBo, 5 = posinao, po = rosinBo. 

(For convenience, we have used r and ro instead of rI, and rQ,  respectively.) 
For large R = ((x- f c ) 2  + ( z  - <)2)i, we have 

Go(P, &) = niKe-K(u+q)H$,l)(KR) + O(R-’) 
03 

= .rriKe-K@+V) z ~ ~ n H ~ ~ ’ ( K ~ o ) . ~ n ( K p ) c o s m ( a - a o )  +O(R-l), (B 1) 
m = O  
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where we have supposed that p < po and then used the well known expansion for 
Hi1)(KR). ( B ,  is the Neumann factor, defined by E ,  = 1, E ,  = 2 for m > 0.) The expan- 
sion of Go(P, Q )  that follows has a form that is suggested by the behaviour of Go at CQ, 

i.e. by (B 1) .  
From (2.1 b) ,  the potential of a simple wave source a t  0 is 

d k  
r e-kgJo(kp)cK = Y:(p ,y ) ,  

say. Potentials which have a singularity of a higher order at  0 have been considered 
by Thorne (1953). He considers functions of the form $z(p,  y) EEL(a), where 

EA(a) = dL cos ma, EiL(a) = 24 sin ma. 

(P,"(x) are the associated Legendre functions, defined by 

dm 
axm P,"(x) = (1-x2)tm--P ( x )  (m 6 n);  

this definition is used by Thorne (1953), but differs by a factor of ( -  l ) m  from that 
used by ErdBlyi et al. (1953).) Let us write 

dk 
Yl;"(p, y) = $z(p,  y) = km+l e-kg J,(kp) - k-K '  

where we have used (ErdBlyi et al. 1953, 3 7.8, equation (10)) 

It follows that, for all m 0, 

Yhn(p, y) = niKm+'H$;)(Kp) e-Ku + O(p-l) ,  (B 4) 

asp  + 00. Comparing (B 4) with (B I ) ,  we see that 

where 

and R,(P, Q )  = O(R-l) as R -+ CO. 

R,(P, Q ) ,  the 'remainder' in (B 5 ) ,  is wave-free, and so we shall seek an expansion 
of R, in terms of 'wave-free potentials'; these have been constructed by Havelock 
(1965) and are given by 

@77n(P) = V Y P ,  Y) E X a ) ,  (B 8) 
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where 

1 "  
= msO km+zj-l (k+K)e-kuJ,,(Ep)dk (, j 2 1 ) .  (B 9) 

We can now state our theorem on the expansion of G,(P, Q). 

be expanded as 
Theorem B. When r,, < rQ (i.e. r c rO),  the source potential defined by (2.1 b )  can 

m a 2  

m =  Oj = O u  = 1 
Go(P,Q) = C C C aTm(P)@Tm(Q), (B 10) 

where 

for u = 1,2 and m , j  = 0 , 1 , 2 ,  .. . . 

n = m = 0) in (2.lB), we obtain 
Proof. It will be convenient to  assume initially that y < 7.  Using (B 3) (with 

G,(P,Q) = $me-k~JO(ER) E -  I< dk .  0 

Expanding J,(kR) and using (B 5 ) ,  we find that 

where 

and we have used (Thorne 1953, equation (7)) 

( 1)9 (kr)m+* 
e*lcYJ,(kp) = Z PK+,( cos 8).  

g = o  ( 2 m + q ) !  

It is easy to see that, in (B 13), the q = 0 terms cancel, whilst the q = 1 terms vanish. 
For q > 1 ,  we have 

p.-1 

s = l  
KkQ-kKg = ( k -  K )  C kSKq-', 

whence the second sum in (B 13) becomes 

where we have changed the order of summation. Write q = 2 j  in the first sum of 
(B 13) arid collect together terms to give 
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Substituting (B 14) into (B 12), and making use of (B 9), we obtain the desired result, 
when y < 7. However, since both sides of (B 10) are regular solutions of Laplace’s 
equation when r < r,, it follows that (B 10) holds for all P and Q such that r p  < rQ.  
This concludes the proof of theorem B. 

Theorem B may also be proved for a simple wave source in water of constant finite 
depth h. As in the two-dimensional case, we simply replace the infinite-depth multi- 
pole potentials @Tm by the corresponding potentials for finite depth. It can be shown 
(Thorne 1953; Wang 1966) that  these are given by - 

6ii”nl(P) = V ( P ,  Y) EXa), (B 15) 

O0 eckr1((K + k) ( K  sinh ky - k cosh ky) km+2i-1 
J,(kP) dk, k sinh kh - K cosh kh 

- 
‘Yjyp,  y) = Yi.in’(p, y) - 

j = 1,2,  ..., and the path of integration passes beneath the pole a t  k = k,, where k, 
is the unique positive real root of 

K cosh ko h - k, sinh k, h = 0. 
We have 

uPy(p,y) - 2nikr+lA(kOh) coshk,hcosh k,(h-y)H$(k,p), (B 16) 

277iA (k, h)  N 

kT+2J’+’ cosh k,(h - y)  H;)(k,p), y’(p’ ’) - (2j)!  cosh k,h 

as p -+ co, f o r j  = 1 , 2 ,  ..., where 

A(k,h) = (2k,h+sinh2kOh)-l. 
The int’egral 

is typical of those required in 3 6. To evaluate it, we apply Green’s theorem to 6rm 
and 6;;) in the region bounded by C.-, F, the bottom y = h, and the surface of a large 
vertical cylinder of radius p, whose axis coincides with the y-axis; we find that 

where we have used (B 15) and integrated over a. As an example, let us t a k e j  = 1 = 0; 
if we use (B 16), evaluate the elementary integral over y, and use the Wronskian 
(ErdBlyi et al. 1953, 5 7 .11 ,  equation (30)) 

we find that 
Hg’(z) H$i”(z) - H $ ~ ) ( z )  H ~ ” ( z )  = - 4i/nz, 

I = - 877’iA (k, h) hirn+’ cash' k, h &,,k a,, - - 8n2i K2m+lS m k ~ g u  as h-> co. 

Other combinations of j and I lead to similar int,egrals. 
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